

World Leaders in Software Based Geotechnical Testing Systems for Laboratory and Field

EMDCSS:1

它是什么?

GDS电机动态循环简单剪切 装置(EMDCSS)用于简单 的剪切试验,可以进行升级, 对试样进行直接剪切试验, 尺寸最大100mm。能够进行 从小应变(0.005%剪切应变 幅度)到大应变(10%剪切 应变幅度)的动态循环试验, 以及非常准确的准静态试验。

这是具有最大测试量程范围 的高刚度的简单剪切实验系 统的终极选择。这也是高级 商业测试或学术研究的完美 选择。

主要特点:	优点:
特氟龙涂层低	圆柱形土壤样品由聚四氟乙烯涂覆的低摩擦保持环横向限制,确保恒定的横截面积
摩擦保持环	(或K0条件)
伺服电机作动器具有	伺服电机作动器可以在5Hz下进行高达+/– 1mm的测试,比同类的气动执行器具有
卓越的性能,占用空	更高的精度。电源供电意味着不需要外部噪声电源组,而与气动系统相反,伺服电
间少并节约成本	机系统只能绘制所需的电源。
主动高度控制	可强制保持恒定的体积,例如简单剪切的实验情况。阶段之间不需要手动干预,也
轴向和剪切向线性导	不会有垂直妥协性的影响。
轨采用超刚性交叉滚	200mm轴承长度不仅提供了稳定性,同时确保了剪切过程中顶盖的旋转范围最小,
子轴承	从而使测试成为简单的剪切而不是旋转运动,而且还提供了具有低摩擦力的高承载
	能力和精确的线性导轨。
GDS剪力传感器	设计成在线性导轨前面测量剪切力,因此剪切荷载测量不包括摩擦产生的误差。

可进行的试验:

循环简单剪切,简单剪切,载荷或应变下的样品的循环 加载,K0实验(K-Zero),多级测试,压密实验/固结 实验,准静态(低速/蠕变)测试,循环测试,慢速,用 户定义的波形,轴向压缩,负载控制(动态),负载控 制(静态),最大剪切模量,静态位移,静载荷,逐级 加载,恒定刚度实验。

升级选项:

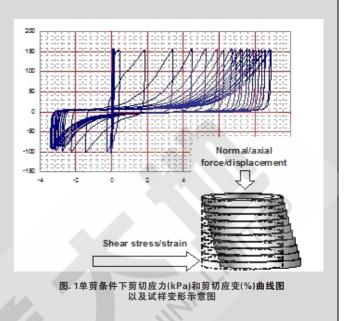
P和S波测量与弯曲元系统;完成直接剪切实验。

由于不断开发,技术参数的改变请留意GDS公司网站,恕不另行通知。

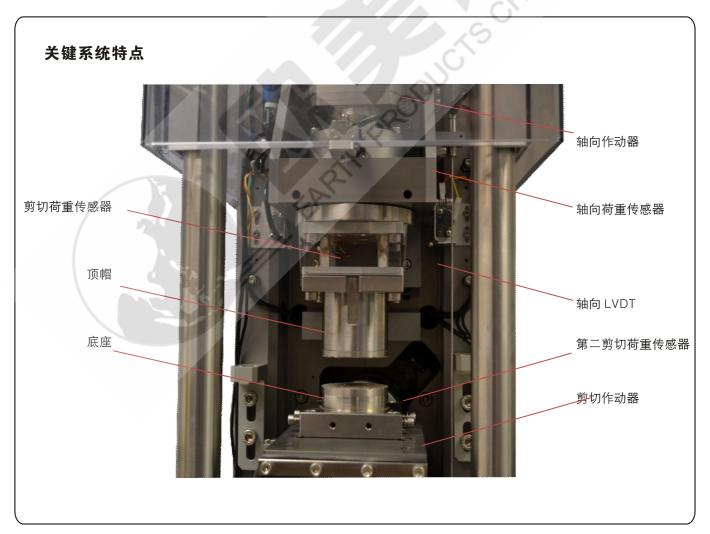
技术参数

- •外形尺寸:1200mm (H) x 500mm (L) X 770mm
- 位移范围:轴向= +/- 25mm,剪切= +/- 15mm: 精度= <0.1%FSO(实际上,轴向范围为+/- 50mm, 以帮助样品放置,但测量行程为+/- 25mm)。
- 位移分辨率:16 位 (即 +/- 20mm = 0.6 μm, +/- 15mm = +/- 0.5 μm, +/- 2.5mm = <0.1 μm)
- 工作频率 (Hz):0 到 5
- 功率:240V 或110V 50/60Hz 1 ph
- •用于直接和简单剪切实验的样品尺寸:
- 50, 63, 63.5, 66, 66.67, 70, 100mm, 自定义
- ●重量约(kg):160

World Leaders in Software Based Geotechnical Testing Systems for Laboratory and Field


Unsat Rowe Unsat CRS

它怎么工作?

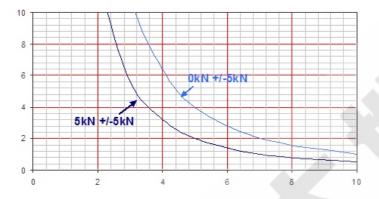

圆柱形土样侧限被涂有特富龙涂层的低摩擦剪切环约束,确保横截面面积不变。施加剪力荷载(见图1)时,垂直 位移可保持恒定,确保常体积条件,也就是单剪。

GDS电机控制的动态循环单剪设备(EMDCSS)可以很 好地研究土的动态特性,因为它简易而且可以模拟现场 的许多加载条件,而这些特点是其它实验室设备所无法 达到的。EMDCSS设备可以让主应力的方向平稳和连续 地旋转90度。模拟主应力旋转的能力可以适合研究许多 岩土问题,包括地震荷载。该单剪试验系统可以直接研 究排水和不排水条件下的剪切应力和剪切应变的关系(见曲线图1),也可以用于海底结构,滑坡和地震性能研 究的常规试验。

另外,动态循环功能还可以用来研究单剪条件下的阻尼 比和液化。



统部份


由于不断开发,技术参数的改变请留意GDS公司网站,恕不另行通知。

EMDCSS:1

典型的系统性能,显示频率和振幅

频率	5kN 力的数据		0kN 力的数据	
(Hz)	振幅(mm)	双振幅(mm)	振幅(mm)	双振幅(mm)
0.1	50	100	50	100
0.2	50	100	50	100
0.5	26.5	53	26.5	53
1	13.3	26.6	13.3	26.6
2	6	12	6	12
3	2.8	5.6	4.4	8.8
4	1.6	3.2	3.2	6.4
5 🛞	1	2	2	4
7	0.5	1	1	2
10	0.25	0.5	0.5	1

GDS DCS - 数字控制系统

GDS 动态系统都是基于位移和荷载闭环反馈的GDS DCS高速数字控制系统。

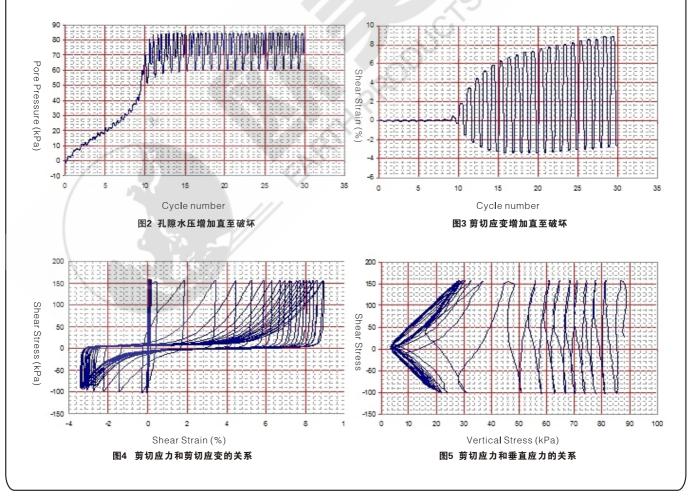
16位数据采集 (A/D)和16位控制输出 (D/A), GDS DCS以两个通道10 kHz的控制频率运行。这就意味着当系统以 10Hz运行时,每个循环有500个控制点。当系统以1Hz运行时,每个循环可以有5000个控制点。

系统的优点是不管购买哪个动态系统,他们都使用同样的高速控制系统。这就确保系统具有最高级别的功能性和 可靠性,因为所有的GDS动态系统都在这个范围内使用同样的高规格控制系统。这样的试验结构的精度和分辨率 都只是作动器的一个基本功能,不管是采用低成本的气动作动器,高精度的电机作动器还是高性能的液压作动器。

由于不断开发,技术参数的改变请留意GDS公司网站,恕不另行通知。

系统部份

Unsat Rowe Unsat CRS


World Leaders in Software Based Geotechnical Testing Systems for Laboratory and Field

DCS 技术规格

- ●可用于记录换能器的通道数量:8通道高品质,金针,带屏蔽LEMO连接
- 每个周期的最大数据点数: 1000
- 控制频率:5000Hz
- PC连接类型:USB
- •实验期间的控制频率:5000个点每秒
- 尺寸 (WxDxH):45 x 26 x 9 cms
- 重量:4.5kg
- ●电源要求:85-254V A.C

实验结果

典型的动态单剪试验结果如下所示。试验是对级配良好的砂子在1Hz的条件下完成的。图2中可以清楚地看到孔 压的增加,在第10个周期左右发生破坏。此时,剪切应变突然开始显著增加,而峰值剪切应力没有增加,同样 表示发生了破坏(如图3所示)。图4显示了剪切应变的快速增加同时剪切应力保持在稳定的控制函数。最终, 相应的来自恒定体积系统的垂直应力也会的如图5所示增加。

由于不断开发,技术参数的改变请留意GDS公司网站,恕不另行通知。

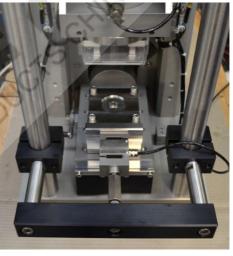
系统部份 World Leaders in Software Based Geotechnical Testing Systems for Laboratory and Field

EMDCSS:1

超高刚度框架结构:

GDS EMDCSS系统设计用于在简单的剪切测试产生终极的性能,并消除 其他简单剪切系统中存在的问题。

EMDCSS的设计尽可能的坚硬。这是一个简单的剪切系统的重要特征。 质量由顶帽和底座决定。即使底座引导系统接近完美,如果系统柔性太高, 结果将受到影响,因为顶盖移动会影响测试结果。


EMDCSS通过使用深支撑梁将线性导轨和两个不锈钢柱安装在机器前部, 进一步支撑系统,实现了高度的刚度。所使用的线性导轨对于系统将承受 的负载大大超过额定值。同样,这增加了系统的刚度。

EMDCSS校准套件

EMDCSS校准夹具用于原位校准垂直,水平和剪切荷重传感器。 它具有多种配置,以确保所有荷重传感器能够被有效地校准。 参考称重传感器连接到EMDCSS数据采集单元(DCS)上的备 用通道,并通过GDSLAB软件读取。校准夹具可用于5kN和10kN EMDCSS版本。

样品制备

- 样品制备由GDS设计,专门用于制备简单的剪切试样。
- 可拆卸的侧臂被夹紧到基座上,底座依次独立地将样品顶帽保持 在样品上方以减少样品扰动(参见图8)。
- 然后将完整的单元安装到主机中,其中侧臂可以被移除。

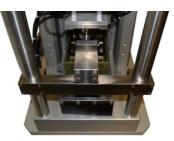
直接剪切升级

增加一个额外的水浴和一个新的样品套, EMDCSS能够对样品进行直接剪切试验 最大试样100mm x 100mm。系统的此升级不会改变荷载或位移能力。

由于不断开发,技术参数的改变请留意GDS公司网站,恕不另行通知。

图 8样品上方的样品顶盖

图9剪切力作用于样品上



World Leaders in Software Based Geotechnical Testing Systems for Laboratory and Field

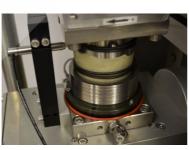
Unsat Rowe Unsat CRS

直接剪切升级

增加一个额外的水浴和一个新的样品套,EMDCSS能 够对样品进行直接剪切试验最大试样100mm x 100mm。 系统的此升级不会改变荷载或位移能力。

弯曲元升级

弯曲元件可以在EMDCSS 范围内的所有尺寸的基座 和顶盖中实现,允许用户 进行剪切波测试。


真空样品安装包

GDS提供的样品成型器使得安装非粘性样品很容易。 模具围绕限制环,并使用真空泵将膜紧紧地拉到环上, 使准备试样变得容易且准确。该模具可用于EMDCSS 的所有样品尺寸。

LVDT 顶帽升级

可以修改EMDCSS顶盖,以允许局部LVDT与系统一起 使用;这为系统增加了一个额外的剪切应变测量。LVDT 安装在直连到基座的支架上。这样之后测量针对的是顶 盖上的平坦表面。传感器连接到EMDCSS的数据采集单 元(DCS盒)。

LVDT升级可用于 所有样品大小 (最大100毫米)。

由于不断开发,技术参数的改变请留意GDS公司网站,恕不另行通知。

GDSLAB控制软件

GDSLAB控制和数据采集软件是一个高度发达,非常 灵活的软件平台。内核模块为必备模块,只能执行数 据采集的功能,可以根据您的测试要求选择其他模块。 一些目前可用的模块如下:

系统部份

- 简单剪切(静态和动态)
- 高级加载测试
- 非饱和土试验

GDSLAB有能力配置到您的硬件上,无论安排如何独特。创建文本文件(*.ini)或初始化文件,描述与PC的硬件连接。硬件布局可通过GDSLAB的

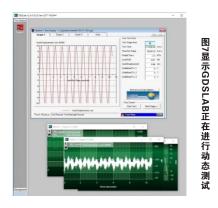

'object display'以图形形式提供。这使得设置和检 查连接非常简单(参见图6)。

图 6 DCS控制EMDCSS的图形界面

GDSLAB动态简单剪切测试模块

- 是用于运行动态循环加载和简单剪切测试的简单易用的用户界面
- 提供轴向位移或轴向荷载和剪切位移或剪切荷载的 正弦循环控制
- 允许每N个循环保存一个完整的数据循环
- 实时控制数据显示
- 每个循环存储高达1000点
- •内置标准波形:正弦波,三角波,方波,半正弦波。
- 有使用1000个点ASCII文件用于用户定义的波形

